Photosynthetic Apparatus Formation during the Cell Cycle of Chlorella.
نویسندگان
چکیده
Synchronous cell division in cultures of Chlorella vulgaris Beijerinck was induced by intermittent illumination: 9 hours light, 6 hours darkness. The rate of photosynthetic O(2) evolution per cell increases 4-fold in a one-step manner at the beginning of the light period, to the same extent as the increase in cell number. Over the division cycle, the following accumulation times during the light period were found: chlorophyll a, between 2 and 8 hours, chlorophyll b, between 5 and 8 hours, reaction centers of photosystems I and II, between 2 and 6 hours; and cytochrome f, between 2.5 and 5 hours. Cytochrome f accumulation is closely followed by an increase in amplitude of the rapid phase in light-induced absorption increase at 520 nanometers and in intensity of the delayed light emission. Enhancement of the delayed fluorescence yield per flash under continuous illumination (caused by the establishment of the pH difference across the thylakoid membrane) is maximal by the first hour of the light period.These findings, and others described in the text, suggested that the 4-fold growth of photosynthetic apparatus in the course of the cell cycle cannot be the result of gradual rise of electron-transport chain number. Rather, it is the result of a series of successive syntheses of its individual components. The rate-limiting step of electron transport is probably located between plastoquinone and cytochrome f.
منابع مشابه
Effects of copper oxide nanoparticles on the growth of Chlorella vulgaris
The increase of copper oxide nanoparticle (CuO-NP) utilization in industry during recent years has resulted in their entry into aquatic ecosystems. In light of this fact, we have studied the toxicity of CuO-NPs at various concentrations on Chlorella vulgaris using an algal growth inhibition test (OECD201). Chlorella vulgaris was grown in positive Zander (Z-8 + N) media in a growth chamber. Afte...
متن کاملGenetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae
BACKGROUND Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the pract...
متن کاملStage-Specific State I-State II Transitions during the Cell Cycle of Euglena gracilis.
In synchronized Euglena gracilis (light-dark regime of 14:10 hours) the successive formation of the photosynthetic apparatus during cell ontogeny is correlated with large changes in photosynthetic efficiency (P Brandt, B von Kessel 1983 Plant Physiol 72: 616-619; B Kohnke, P Brandt 1984 Biochim Biophys Acta 766: 156-160). This observation led us to investigate the functional association of the ...
متن کاملGlycolic Acid Labeling During Photosynthesis with CO(2) and Tritiated Water.
Chlorella pyrenoidosa were allowed to photosynthesize for short periods of time in the presence of (14)CO(2) and HTO. Analysis of tritium and (14)C labeling of photosynthetic intermediate compounds showed that the T/(14)C ratio of glycolic acid was comparable to that of intermediate compounds of the photosynthetic carbon reduction cycle when photosynthesis was performed in nearly 100% oxygen an...
متن کاملNitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3
Microalgal lipid is one of the most promising feedstocks for biodiesel production. Chlorella appears to be a particularly good option, and nitrogen (N) starvation is an efficient environmental pressure used to increase lipid accumulation in Chlorella cells. The effects of N starvation of an oil-producing wild microalga, Chlorella sorokiniana C3, on lipid accumulation were investigated using thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 67 5 شماره
صفحات -
تاریخ انتشار 1981